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Abstract 

An analysis based on geometrical optics for a dual-reflector antenna system with 
bvo arbitrarily shaped reflectors is carried out. Formulas for the phase and ampli- 
tude distribution in the aperture of the second reflector are obtained when the 
source function and the reflector surfaces are given. A design technique based on 
the derived formulas is also discussed. 
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Arbitrarily Shaped Dual-Reflector Antennas 

I. Introduction dual-reflector system. The purpose of the present work is 
to analyze this problem. 

The design of dual-reflector antennas based on the tech- 
nique described by Galindo (Ref. 1) has been rather suc- 
cessful. The surfaces of these reflectors are surfaces of II. Analysis 
revolution about an axis on which the feed horn is located. 
Galindo derived a pair of first-order nonlinear differential 
equations according to the laws of geometrical optics. 
Upon solving this set of equations one obtains the shapes 
of the dual reflectors for a given phase and amplitude dis- 
tribution in the aperture of the second reflector. Although 
Galindo's technique may be extended, in principle, to treat 
the case in which the feed horn may be located away from 
the axis of the reflectors, the resultant equations are a set 
of nonlinear partial differential equations which are very 
diEcult (if not impossible) to solve. 

In an attempt to circumvent this difficulty it is proposed 
that one consider the following problem: Assuming that 
the shapes of the two reflector surfaces are given, find the 
aperture field distribution in the aperture of the second 
reflector. To obtain the desired aperture field distribution 
a trial-and-error method is used to find the appropriate 
shapes of the dual reflectors. For the initial trial the shapes 
of the reflectors are assumed to be those obtained accord- 
ing to Galindo's method for a symmetrical, on-axis feed, 

A point source is assumed to be located at a point 
A (x,, yo, zo). A ray originating from the point source rat A 
is assumed to be reflected at the point B (x,, y,, z,) on a 
doubly curved reflecting surface called suqace 1. The 
reflected ray from surface 1 is again reflected at the point 
C (x,, y,, z,) on another doubly curved reflecting surface 
called surface 2. This reflected ray from surface 2 finally 
arrives at the field point D (x,, y3, 2 3 ) .  The geomem of this 
problem is given in Fig. 1. It is assumed that surface 1 may 
be described by the equation z = f ,  (x ,  y), and surface 2 by 
z = f z  (x, Y). 

The techniques of geometrical optics will be ansed to 
treat the present problem. The geometrical optics analysis 
assumes that at each point on the reflector the incident ray 
is reflected by the tangent plane according to the laws of 
reflection. The intensity of the reflected wave in a given 
direction is obtained by applying the principle of the con- 
servation of energy to the total power contained in an 
incident cone of rays and the total power contained in the 
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associated reflected pencil of rays. The use of the laws of 
resection assumes that (1) the reflector 1 or 2 can be 
regarded lscaliiy as a plane surface, and (2) the incident 
wavefront can be regarded locally as a plane wave. In = f2hCy) 
other words, the radii of curvature of reflector 1 or 2 and (REFLECTOR 2) 

of the incident wavefront must be large compared with 
the wavelength. Gon&tion (2) may be assured by the fact 
that the reflectors ar~e in the far-zone field of the source. 

The phase distribution across the aperture of reflecting 
surface 2 will depend on the path length and phase change 
upon reflection. The phase length is easily calculated if 
the point of reflection on the surface is known and if the 
point of reflection is uniquely defined by the Snell law, 
which states that the angle of incidence is equal to the 
angle of reflection. For example (refer to Fig. l), the total 
path length of a ray travelling from point A to D is 
(L, + L2 -C 1: ), with 

L, = [(z.' - 2jJ2 + (y* - yJ2 + (z* - ~ * ) * ] ~ h  

A proccdnre for finding the locations of (x,,y,,z,), (xz,~a,z,), 
and (x,,  y ,, :: ) is given in Appendix A. 

Upon considering the dispersive effect of the curved 
reflecting surfaces and the transformation of the polariza- 
tion on reflection, one obtains the following expression for 
thc electric field at point D3: 

with 

A IS SOURCE POINT 
D IS FIELD POINT 

Fig. 1. The geometry of the problem 

where 

EAi = electric field at point A 

EBi = incident electric field at point B 

Eci = incident electric field at point C 

ED = electric field at point D 

nB = unit normal vector at point B 

n, = unit normal vector at point C 

k = free-space wave number 

R:, R: = principal radii of curvature of the reflected 
wavefront at point B 

Ry, R: = principal radii of curvature of the reflected 
wavefront at point (2 

The principal radii of curvature of the reflected wavefront 
can be found by considering the principle of conservation 
of energy in an incident cone of rays. Detailed derivation 
is given in Appendix B. The R: and R: can be obtained 
from the following equation 

where 

1 
LB = 2 aB cos iB - - 

L, 

MB = - 2 cB cos iB 
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B - - cos 67 cos 0; G - 
sin2 iB 

denote, respectively, the angles between the incident ray 
and the principal axes of the reflector 4" and l?B. The sym- 
bols R$ and RB, denote the principal radii of cumatasre of 
the reflector surface at point B. According to1 the theory 
of differential geometry (Ref. 4), if the eqnation of a sur- 
face is given by 

2 = f l ( ~ , ~ )  

The symbol iB denotes the angle between the incident ray the principal radii of curvature of the surface at poieat 
and the unit normal n, at point B. The symbols 6: and 0; can be found from the equation 

where 

The principal radii of curvature of the reflected wavefront at point C, RC,, , can be obtained in a similar faslaion as that 
shown for R:,, by replacing the B by C, the f l  by f,, and the L, by L2. 

III. Conclusions 

Since to achieve maximum gain requires uniform phase and amplitude distribution across the aperture, it is desir- 
able to design the reflector surfaces so that the requirement on phase and amplitude may be met. The formula given 
(i.e., Eq. 1) will enable us to calculate the aperture field distribution when the source function and the reflector s r ~ r f a e ~ s  
are given. 
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Appendix A 

Phase Length Computation 

It is assumed that the phase center of the feed horn is (2 )  From the Snell law, one obtains the unit vector for 
located at (x,, yo, z,) and that the direction cosine of a ray the reflected ray (ray 2) ,  
starting from this point is (Po,mo, no).  Furthermore, the 
equations for the two reflecting surfaces are given by T l  = - Il + 2 ( I l * N l ) N l  (A-8) 
z = f ,  ( x ,  y )  md z = f ,  ( x ,  y). The geometry of this prob- 
lem is shown in Fig. 1. The following procedures will be where the direction cosines of the unit vectors I1 
followed to compute the phase length of each ray: and N ,  are, respectively, 

(1) Ray I, originating from (x,, yo, 2,) with direction 
cosines (a,, m,, no), satisfies the equation 

x-Xo y - y o  z - z o  - - 
P o  mo no (A-1) 

This ray intercepts the first reflecting surface z = 

f I  (x, y) at (x l ,  yl, z i ) .  The point (x,, yl, 2,) is found 
by  solving the following set of equations: 

if m, + 0, then 

n u  
- (yl - yo) + zo = 
mu 

if 9, + 0, then 

.Po 
X 1  = - (y1 - yo) + xo 

mo 

no 
- (XI - xo) + 2, = 
.p 0 

with 

So, the direction cosines for ray 2 are 

with 

Hence, the equation for ray 2 is 

21 = f ~ ( % ,  yl) (A-7) (3) Now, ray 2 intercepts the second reflecting surface 
z = f z  ( x ,  y )  at (x,, y,, 2,). The point (x,, y,, z,) can 

The length inof ray 1 is then be found in a manner similar to that described 
in (1).  Only the subscripts 0 and 1 in Eqs. (A-2) 

.L, = e(xl - xo)" (y l  - yo)+ (2, - through (A-7) need be replaced, respectively, by the 
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subscripts 1 and 2. The length of ray 2 is then 
L2 = [(x2 - xl), 4- (y2 - Y , ) ~  + (z2 - z ~ ) ~ ] ~ .  From 
the Snell law and following the procedure given in 
(2), we can obtain the unit vector for the reflected 
ray (ray 3): 

T2 = (P2, m2, n2) (A-14) 

where 

a, = a, (2 a$, - 1) 

Hence, the equation for ray 3 is 

(4) Ray 3 intercepts the surface z = f ,  (x, y) at (x,, y,, G). 
The point (x,, y,, z,) can be found in the same way 
as described in (1). Only the subscripts 0 and 1 in 
Eqs. (A-2) through (A-7) need be replaced, respee- 
tively, by the subscripts 2 and 3. The length of ray 3 
is then 
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Appendix B 

Derivation of t he  Amplitude Reflection Coefficient 

T h e  magnitude of the reflected wave will be derived Assunzing that (u,v,w) are the coordinates of a point on 
according to the laws of geometrical optics and the prin- the reflected wavefront and (x, y,z) are the coordinates of 
cipiie of the conservation of energy (Ref. 2). Consider a the point on the reflector for which the reflected ray passes 
tube of rays that cuts out elements dA, and dA, on the through a given point (u,v,w) on the wavefront, the radii 
two wave sur"Eces S, and S2 in free space. The principle of curvature of the reflected wavefront (R,, R2) can be 
of conserv-v-afion of energy requires that found from the following equation (Ref. 4): 

where PI = 1 El I is the power flow per unit area at (B-6) 
the wave surface S,, and P, = mCL 1 E, 1 is the power 
flow per unit area at the wave surface S L .  The symbols 
( E ,  d) are the constiktive parameters of free space. The where the reflector surface is assumed to be denoted by 

absolute vaJtaes / E, and I E, I are, respectively, the mag- the equation 

nitudes of the fields at S,  and S,. Let R, and R2 be the two 
ps,ncipal radii of curvatures at a point in dA, on the wave z = f (x, Y )  03-71 
s ~ ~ r f a c e  S1, and let p be the length of rays between the 
wavcfront stirfaces S, and S2;  then one can easily show and 

by consideration of simple geometrical relations that the 
rekition betvreen the cross sections of the tube of rays is 

Hence, we have 

Referring now to the problem of reflection for a con- 
ducting surface and according to the laws of reflection 
and the conserva"cion of energy, one has 

IEiI = IE,] 03-41 1 a2v a0 - a0 

ax 
where jE, 1 is the magnitude of the incident wave and 

ay 

1 G. 1 is the magnitude of the reflected wave. So the mag- 
n i~ude  of the field arnplikde IE, I at a distance p along 
the: reflected ray is 
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Hzre R1 and R2 refer to the radii of curvature of the 1 

M=d-Z%j reflected wavefront. For computational purposes it is 
much better to express R, and R, in terms of the radii of 
curvature of the reflecting surface RE and R,. The values 
for Rt and R, can be found according to Eq. (6) in the text. 

a2v - av - av 
ax ay 

- a2w - aw - aw 
axay ax ay 

(B-12) 



with 

These relationships between ( u ,  v, w) and (x, y, z )  are de- 
tennined according to the law of reflection (Ref. 2). In 
the neighborhood of the point of reflection P, the equation 
for the reflector surface is describable by the expression 

with 

where is the angle between the plane of incidence and 
the principal plane of curvature of the reflector at P. (At P, 
we have x  = y = z = 0, and u = v = w = 0). The surface 
of the reflected wave in the neighborhood of P may be 
represented by the following equations: 

u = x + 6, (x, y) (r,  - r )  (B-16) 

= y + 6, (x, y )  (r, - 5)  (B-17) 

w = z + 6, ( x ,  y )  (r ,  -- r j (B-18) 

with 

y - T ,  sin i i 'z 
G2 (x, Y )  = + 2 d ,  

'Y 

1 + - (z - r, cos i) 
rA2 

The symbol r, denotes the distance between the adginat- 
ing point of the incident ray and P, thc point of reflectaon 
on the surface; and r is the distance between the originat- 
ing point and an arbitrary point (x, y, z )  on the reace- 
tor, i.e.: 

T = [ x2  + y2 + z2 + r; - 2ro ( y  sin i i-- z eos i)]'/i 

(B-24) 

The symbol i denotes the angle be~cveeaic the incident ray 
and the outward normal at P on thte reflector surface. 

Carrying out the tedious co~nputation and takrng the 
limit as x -+ 0 and y + 0, one has 

2 a sin i eos i (B-27) 
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au ac, -- - - ( ro -r )+Gl  
a~ a~ 

a2u 
-=(ro-r)----+2- -- + G I  -- ay3  ayz aG1 a y  ( (i) ( ) 1 x,Y+o = 4 c cosi sin i 

3% sin i 
= -asinicosi + - (B-31) 

Z,Y-+O To 

a2v -- - = 3ccosisini 
axay 

(B-32) 

a0 - - a ~ ,  ( ) = m s 2 i  
- I + - ( r o - r ) + G 2  -- (B-33) 

ay ay x,v- to  

-- 1 
= -5bsinicosi + -(3cos2isini) 

r 
(B-34) 

X , Y - + O  

aw a~ --- " S  ( 31 = o  - + ( r o - r ) - + G s  -- 
ax ax ax 

Z,V'O 

a2w a22 -- a~~ cos i 
= u ( ~ + c o s ~ ~ ) - -  ax2 ax2 ax2 ax x,v+o To 

(B-36) 

a2w aZx 
= c ( - 1  + 2sin2i - cos2i) (B-37) 

= cos i sin i (B-38) 

1 
= b ( l  - 4sin2i + cos2i) + - ~ o s i ( 2 ~ i n 2 i  - coszi) 

Z , V + O  r 0 

(B-39) 
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It can also be shown that as x, y 3 0, 

ar - 3 0  
ax 

ar --+ -sini 
ay 

a2r 1 
-+-(I - roacosi) 
ax2 To 

a2r --+ ccosi 
a ~ a y  

a2r 1 
- + - (cos" - ro b cos i) 
ay2 TO 

GI + 0 

G, -+ - sin i 

GS + cos i 

aG, 1 
-+- + 2a(-cosi) 
ax ro 

aG1 --+2ccosi 
ay 

aG, cos isini 
-3 - 2 b sin i 
ay yo 

Substituting Eqs. (B-25-B-39) into Eqs. (B-8-B-13) gives 

E = 1, F - 0  

G = cos2 i 

EG - F2 = cos" 

Using Eq. (B-40) and the definition for a, b, and c given 
in Eq. (B-IS), one can readily derive Eq. (4) in the text. 
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